Advertisements
Advertisements
प्रश्न
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
उत्तर
LHS = (cos α – cos β)2 + (sin α – sin β)2
`= (- 2 sin (alpha + beta)/2 sin (alpha - beta)/2)^2 + (2 cos (alpha + beta)/2 sin (alpha - beta)/2)^2`
`= 4 sin^2 (alpha + beta)/2 sin^2 (alpha - beta)/2 + 4 cos^2 (alpha + beta)/2 sin^2 (alpha - beta)/2`
`= 4 sin^2 (alpha - beta)/2 [sin^2 (alpha + beta)/2 + cos^2 (alpha + beta)/2]`
`= 4 sin^2 (alpha - beta)/2` = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.