Advertisements
Advertisements
प्रश्न
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
उत्तर
`sin "A"/8 sin (3"A")/8 = 1/2(2 sin "A"/8 sin (3"A")/8)`
[∵ 2 sin A sin B = cos(A – B) – cos(A + B)
`= 1/2[cos ("A"/8 - (3"A")/8) - cos("A"/8 + (3"A")/8)]`
`= 1/2 [cos (("A" - 3"A")/8) - cos (("A" + 3"A")/8)]`
`= 1/2 [cos ((- 2"A")/8) - cos ("4A"/8)]`
`= 1/2 [cos ((- "A")/4) - cos ("A"/2)]`
`= 1/2 [cos "A"/4 - cos "A"/2]` ...[∵ cos(-θ) = cos θ]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
The value of cos 52° + cos 68° + cos 172° is
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ