Advertisements
Advertisements
प्रश्न
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
उत्तर
Given that tan α = `1/7`
We wish to find tan(α + 2β)
AB2 = AC2 - BC2
AB2 = 10 - 1
AB2 = 9
AB = 3
sin β = `1/sqrt10 = "Opposite side"/"Hypotenuse"`
tan β = `"Opposite side"/"Adjacent side" = 1/3` (Here β is an acute angle)
Now tan 2β = `(2 tan beta)/(1 - tan^2 beta)`
`= (2 (1/3))/(1 - (1/3)^2) = (2/3)/(8/9)`
`= 2/3 xx 9/8 = 3/4`
Consider tan (α + 2β) = `(tan alpha + tan 2 beta)/(1 - tan alpha tan 2beta)`
`= (1/7 + 3/4)/(1 - 1/7 xx 3/4)`
`= ((1 xx 4 + 3xx7)/28)/(1 - 3/28)`
`= (25/28)/(25/28)` = 1
tan (α + 2β) = `tan pi/4 (because tan pi/4 =1)`
∴ α + 2β = `pi/4`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cosec 15º
Find the value of the following:
sin (-105°)
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Prove that 2 tan 80° = tan 85° – tan 5°.
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
If sin A = `3/5`, find the values of cos 3A and tan 3A.
Find the value of tan `pi/8`.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of sin 15° cos 15° is:
If sin A + cos A = 1 then sin 2A is equal to: