Advertisements
Advertisements
प्रश्न
Find the value of the following:
sin (-105°)
उत्तर
sin (-105°) = -sin (105°) (∵ sin (-θ) = – sin θ)
= -[sin(60° + 45°)]
= -[sin 60° cos 45° + cos 60° sin 45°]
`= -[sqrt3/2 xx 1/sqrt2 + 1/2 xx 1/sqrt2]`
`= - [sqrt3/(2sqrt2) + 1/(2sqrt2)]`
`= - [(sqrt3 + 1)/(2sqrt2)]`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
Prove that 2 tan 80° = tan 85° – tan 5°.
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
If tan θ = 3 find tan 3θ
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
Find the value of sin 75°.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of 1 – 2 sin2 45° is: