Advertisements
Advertisements
प्रश्न
Find the value of the following:
cot 75°
उत्तर
cot 75° = `1/(tan 75^circ)`
Consider tan 75° = tan (30° + 45°)
`= (tan 30^circ + tan 45^circ)/(1 - tan 30^circ tan 45^circ)`
`= (1/sqrt3 + 1)/(1 - (1/sqrt3) xx 1)`
`= ((1 + sqrt3)/sqrt3)/(1 - 1/sqrt3)`
`= (((1 + sqrt3)/sqrt3))/(((sqrt3 - 1)/sqrt3))`
`= (1 + sqrt3)/sqrt3 xx sqrt3/(sqrt3 - 1)`
`= (sqrt3 + 1)/(sqrt3 - 1)`
cot 75° = `1/(tan 75^circ) = (sqrt3 + 1)/(sqrt3 - 1)`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cosec 15º
Find the value of the following:
sin (-105°)
Find the value of the following:
cos2 15° – sin2 15°
Prove that 2 tan 80° = tan 85° – tan 5°.
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
Find the value of tan `pi/8`.
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
The value of sin (-420°)
If p sec 50° = tan 50° then p is: