Advertisements
Advertisements
प्रश्न
Find the value of the following:
cot 75°
उत्तर
cot 75° = `1/(tan 75^circ)`
Consider tan 75° = tan (30° + 45°)
`= (tan 30^circ + tan 45^circ)/(1 - tan 30^circ tan 45^circ)`
`= (1/sqrt3 + 1)/(1 - (1/sqrt3) xx 1)`
`= ((1 + sqrt3)/sqrt3)/(1 - 1/sqrt3)`
`= (((1 + sqrt3)/sqrt3))/(((sqrt3 - 1)/sqrt3))`
`= (1 + sqrt3)/sqrt3 xx sqrt3/(sqrt3 - 1)`
`= (sqrt3 + 1)/(sqrt3 - 1)`
cot 75° = `1/(tan 75^circ) = (sqrt3 + 1)/(sqrt3 - 1)`
APPEARS IN
संबंधित प्रश्न
Prove that 2 tan 80° = tan 85° – tan 5°.
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
If sin A = `12/13`, find sin 3A.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
Find the value of sin 75°.
Find the value of tan 15°.
The value of sin 15° is:
The value of cos2 45° – sin2 45° is:
The value of 4 cos3 40° – 3 cos 40° is