Advertisements
Advertisements
प्रश्न
If sin A = `12/13`, find sin 3A.
उत्तर
If sin A = `12/13`
We know that sin 3A = 3 sin A – 4 sin3 A
`= 3(12/13) - 4(12/13)^3`
`= 12/13 [3 - 4 xx 12/13 xx 12/13]`
`= 12/13 [3 - 576/169]`
`= 12/13[(507 - 576)/169]`
`= 12/13 [(-69)/169]`
`= (- 828)/2197`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin (-105°)
Find the value of the following:
`sin pi/4 cos pi/12 + cos pi/4 sin pi/12`
Find the value of the following:
cos 70° cos 10° – sin 70° sin 10°
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
Find the value of tan 15°.
If cos (α + β) = `4/5` and sin (α - β) = `5/13` where (α + β) and (α - β) are acute, then find tan 2α.
The value of cos2 45° – sin2 45° is:
The value of 1 – 2 sin2 45° is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is: