Advertisements
Advertisements
प्रश्न
If tan θ = 3 find tan 3θ
उत्तर
tan θ = 3
tan 3θ = `(3 tan θ - tan^3 θ)/(1 - 3 tan^2 θ)`
`= (3(3) - (3)^3)/(1 - 3(3)^2)`
`= (9 - 27)/(1 - 27)`
`= (- 18)/(- 26) = 9/13`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Find the value of the following:
cos2 15° – sin2 15°
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
If sin A = `3/5`, find the values of cos 3A and tan 3A.
Find the value of tan `pi/8`.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of sin 15° cos 15° is: