Advertisements
Advertisements
प्रश्न
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
उत्तर
LHS = cot 4x (sin 5x + sin 3x)
`= cot 4x xx 2 sin ((5x + 3x)/2) cos ((5x - 3x)/2)`
`= 2 (cos 4x)/(sin 4x) xx sin 4x xx cos x` = 2 cos 4x cos x
RHS = cot x (sin 5x - sin 3x)
`= cot x xx 2 sin ((5x - 3x)/2) * cos ((5x + 3x)/2)`
`[sin "A" - sin "B" = 2 sin (("A - B")/2) cos(("A + B")/2)]`
`= (cos x)/cancel(sin x) xx 2 cancel (sin x) cos 4x`
= 2 cos x cos 4x
LHS = RHS.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
If tan θ = 3 find tan 3θ
If sin A = `3/5`, find the values of cos 3A and tan 3A.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
Find the value of sin 75°.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
If sin A + cos A = 1 then sin 2A is equal to:
If p sec 50° = tan 50° then p is: