Advertisements
Advertisements
प्रश्न
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
उत्तर
LHS = sin (A + 60°) + sin (A – 60°)
= sin A cos 60° + cos A sin 60° + sin A cos 60° – cos A sin 60°
= 2 sin A cos 60°
= 2 sin A `(1/2)`
= sin A
= RHS
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
`sin pi/4 cos pi/12 + cos pi/4 sin pi/12`
Find the value of the following:
cos 70° cos 10° – sin 70° sin 10°
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
If cos (α + β) = `4/5` and sin (α - β) = `5/13` where (α + β) and (α - β) are acute, then find tan 2α.
The value of 1 – 2 sin2 45° is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is: