Advertisements
Advertisements
प्रश्न
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
उत्तर
Given A + B = 45°
tan (A + B) = tan 45°
`(tan "A" + tan "B")/(1 - tan "A" tan "B")` = 1
tan A + tan B = 1 – tan A . tan B
tan A + tan B + tan A tan B = 1
Add 1 on both sides we get,
(1 + tan A) + tan B + tan A tan B = 2
1(1+ tan A) + tan B (1 + tan A) = 2
(1 + tan A) (1 + tan B) = 2 ……. (1)
Put A = B = 22`1/2` in (1) we get
`(1 + tan 22 1/2) (1 + tan 22 1/2)` = 2
⇒ `(1 + tan 22 1/2)^2` = 2
⇒ 1 + tan 22`1/2 = +- sqrt2`
⇒ tan 22`1/2 = +- sqrt2 - 1`
Since 22`1/2` is acute, tan `22 1/2` is positive and therefore tan `22 1/2 = sqrt2 - 1`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cot 75°
Find the value of the following:
`sin pi/4 cos pi/12 + cos pi/4 sin pi/12`
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If tan θ = 3 find tan 3θ
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
The value of cos2 45° – sin2 45° is:
The value of 4 cos3 40° – 3 cos 40° is
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is: