Advertisements
Advertisements
Question
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Solution
Given A + B = 45°
tan (A + B) = tan 45°
`(tan "A" + tan "B")/(1 - tan "A" tan "B")` = 1
tan A + tan B = 1 – tan A . tan B
tan A + tan B + tan A tan B = 1
Add 1 on both sides we get,
(1 + tan A) + tan B + tan A tan B = 2
1(1+ tan A) + tan B (1 + tan A) = 2
(1 + tan A) (1 + tan B) = 2 ……. (1)
Put A = B = 22`1/2` in (1) we get
`(1 + tan 22 1/2) (1 + tan 22 1/2)` = 2
⇒ `(1 + tan 22 1/2)^2` = 2
⇒ 1 + tan 22`1/2 = +- sqrt2`
⇒ tan 22`1/2 = +- sqrt2 - 1`
Since 22`1/2` is acute, tan `22 1/2` is positive and therefore tan `22 1/2 = sqrt2 - 1`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Find the value of the following:
cos 70° cos 10° – sin 70° sin 10°
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
If sin A = `12/13`, find sin 3A.
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
If sin A + cos A = 1 then sin 2A is equal to:
The value of 4 cos3 40° – 3 cos 40° is
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is:
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to: