Advertisements
Advertisements
Question
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
Solution
Since A and B are acute angles, all the ratios are positive.
sin A = `1/3`; sin B = `1/4`; cos A = `(2sqrt2)/3`; cos B = `sqrt15/4`
∴ sin (A + B) = sin A cos B + cos A sin B
`= 1/3 * sqrt15/4 + (2sqrt2)/3 * 1/4`
`= sqrt15/12 + (2sqrt2)/12`
`= (sqrt15 + 2sqrt2)/12`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
cot 75°
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
If tan θ = 3 find tan 3θ
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
The value of sin 15° is:
The value of sec A sin(270° + A) is:
If sin A + cos A = 1 then sin 2A is equal to:
The value of cos2 45° – sin2 45° is:
The value of 1 – 2 sin2 45° is: