Advertisements
Advertisements
Question
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
Solution
LHS = `cos^-1 (12/13) + sin^-1 (3/5)`
`= sin^-1 sqrt(1 - (12/13)^2) + sin^-1 (3/5)`
`[∵ cos^-1 x = sin^-1 sqrt(1 - x^2)]`
`= sin^-1 sqrt((169 - 144)/169) + sin^-1 (3/5)`
`= sin^-1 (5/13) + sin^-1 (3/5)`
`= sin^-1 [5/13 sqrt(1 - (3/5)^2) + 3/5 sqrt(1 - (5/13)^2)]`
`[∵ sin^-1 x + sin^-1 y = sin^-1 (xsqrt(1 - y^2) + ysqrt(1 - x^2))]`
`= sin^-1 [5/13 xx sqrt((25 - 9)/25) + 3/5 sqrt((169- 25)/169)]`
`= sin^-1 [5/13 xx 4/5 + 3/5 xx 12/13]`
`= sin^-1 [4/13 + 36/65]`
`= sin^-1 [(20 + 36)/65]`
`= sin^-1 (56/65)` = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If tan θ = 3 find tan 3θ
If sin A = `12/13`, find sin 3A.
If sin A = `3/5`, find the values of cos 3A and tan 3A.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
Find the value of tan `pi/8`.
Find the value of tan 15°.
If cos (α + β) = `4/5` and sin (α - β) = `5/13` where (α + β) and (α - β) are acute, then find tan 2α.
The value of sin 28° cos 17° + cos 28° sin 17°
If p sec 50° = tan 50° then p is: