Advertisements
Advertisements
Question
If sin A = `3/5`, find the values of cos 3A and tan 3A.
Solution
Given sin A = `3/5`
cos A = `"Adjacent side"/"Hypotenuse" = 4/5`
and tan A = `Opposite side/"Adjacent side" = 3/4`
We know that cos 3A = 4 cos3 A – 3 cos A
`= 4(4/5)^3 - 3(4/5)`
`= (4/5)[4 xx (4/5)^2 - 3] = 4/5[4 xx 16/25 - 3]`
`= 4/5[(64 - 3 xx 25)/(25)]`
`= 4/5((64 - 75)/25)`
`= 4/5 xx (-11)/25 = (-44)/125`
tan 3A = `(3 tan "A" - 4tan^3 "A")/(1 - 3 tan^2"A")`
`= (3(3/4) - (3/4)^3)/(1 - 3(3/4)^2)`
`= (3/4[3 - (3/4)^2])/(1 - 3 xx 9/16)`
`= (3/4 [(48 - 9)/16])/((16 - 27)/16)`
`= 3/4[39/16 xx 16/(-11)]`
`= (- 117)/44`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin (-105°)
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Find the value of the following:
cos2 15° – sin2 15°
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
The value of cos(-480°) is:
The value of sin 15° cos 15° is:
The value of 1 – 2 sin2 45° is:
The value of 4 cos3 40° – 3 cos 40° is