Advertisements
Advertisements
Question
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
Solution
Consider `(sin ("B - C"))/(cos "B" cos "C")`
`= (sin "B" cos "C" - cos "B" sin "C")/(cos "B" cos "C")`
`= (sin "B" cos "C")/(cos "B" cos "C") - (cos "B" sin "C")/(cos "B" cos "C")`
= tan B – tan C ……… (1)
Similarly we can prove `(sin ("C - A"))/(cos "C" cos "A")` = tan C – tan A …….(2)
and `(sin ("A - B"))/(cos "A" cos "B")` = tan A – tan B …….. (3)
Add (1), (2) and (3) we get
`(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If sin A = `3/5`, find the values of cos 3A and tan 3A.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
Find the value of tan 15°.
The value of sin 15° is:
The value of sin (-420°)
The value of sec A sin(270° + A) is:
If p sec 50° = tan 50° then p is: