Advertisements
Advertisements
प्रश्न
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
उत्तर
Consider `(sin ("B - C"))/(cos "B" cos "C")`
`= (sin "B" cos "C" - cos "B" sin "C")/(cos "B" cos "C")`
`= (sin "B" cos "C")/(cos "B" cos "C") - (cos "B" sin "C")/(cos "B" cos "C")`
= tan B – tan C ……… (1)
Similarly we can prove `(sin ("C - A"))/(cos "C" cos "A")` = tan C – tan A …….(2)
and `(sin ("A - B"))/(cos "A" cos "B")` = tan A – tan B …….. (3)
Add (1), (2) and (3) we get
`(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cosec 15º
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
Find the value of tan `pi/8`.
Find the value of sin 75°.
Find the value of tan 15°.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of sin 15° is:
The value of sin 15° cos 15° is: