Advertisements
Advertisements
प्रश्न
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
उत्तर
cos A = `13/14`, cos B = `1/7`
sin A = `sqrt(1 - cos^2"A")`
`= sqrt(1 - 1/49) = sqrt(48/49) = sqrt48/7 = (4sqrt3)/7`
cos(A – B) = cos A cos B + sin A sin B
`= 13/14 xx 1/7 + (3sqrt3)/14 xx (4sqrt3)/7`
`= 13/98 + 36/98 = 49/98 = 1/2`
cos(A – B) = cos 60°
A – B = 60° = `pi/3`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cosec 15º
Find the value of the following:
sin (-105°)
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
If tan θ = 3 find tan 3θ
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Find the value of tan 15°.
The value of 4 cos3 40° – 3 cos 40° is
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is: