Advertisements
Advertisements
प्रश्न
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
उत्तर
LHS = sin (A + 60°) + sin (A – 60°)
= sin A cos 60° + cos A sin 60° + sin A cos 60° – cos A sin 60°
= 2 sin A cos 60°
= 2 sin A `(1/2)`
= sin A
= RHS
APPEARS IN
संबंधित प्रश्न
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If tan θ = 3 find tan 3θ
If sin A = `12/13`, find sin 3A.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of cos(-480°) is:
If sin A + cos A = 1 then sin 2A is equal to:
The value of cos2 45° – sin2 45° is: