Advertisements
Advertisements
प्रश्न
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
उत्तर
4A = 3A + A
tan 4A = tan (3A + A)
tan 4A = `(tan 3"A" + tan "A")/(1- tan 3"A" tan "A")`
on cross multiplication we get,
tan 3A + tan A = tan 4A (1 – tan 3A tan A) = tan 4A – tan 4A tan 3A tanA
i.e., tan 4A tan 3A tan A + tan 3A + tan A = tan 4A
(or) tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cosec 15º
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
The value of sin (-420°)
The value of sin 28° cos 17° + cos 28° sin 17°
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is:
If p sec 50° = tan 50° then p is: