Advertisements
Advertisements
Question
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
Solution
4A = 3A + A
tan 4A = tan (3A + A)
tan 4A = `(tan 3"A" + tan "A")/(1- tan 3"A" tan "A")`
on cross multiplication we get,
tan 3A + tan A = tan 4A (1 – tan 3A tan A) = tan 4A – tan 4A tan 3A tanA
i.e., tan 4A tan 3A tan A + tan 3A + tan A = tan 4A
(or) tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
`sin pi/4 cos pi/12 + cos pi/4 sin pi/12`
Find the value of the following:
cos 70° cos 10° – sin 70° sin 10°
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
The value of sin (-420°)
The value of sin 15° cos 15° is:
The value of 1 – 2 sin2 45° is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is:
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to: