Advertisements
Advertisements
Question
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
Solution
Consider a2 + b2 = sin2α + sin2β + 2 sin α sin β + cos2α + cos2β + 2 cos α cos β
a2 + b2 = (sin2α + cos2α) + (sin2β + cos2β) + 2[cos α cos β + sin α sin β]
a2 + b2 = 1 + 1 + 2 cos(α – β)
∴ cos(α – β) = `(a^2 + b^2 - 2)/2`
APPEARS IN
RELATED QUESTIONS
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
Prove that 2 tan 80° = tan 85° – tan 5°.
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If tan θ = 3 find tan 3θ
If sin A = `3/5`, find the values of cos 3A and tan 3A.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
Find the value of sin 75°.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of cos(-480°) is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is: