Advertisements
Advertisements
प्रश्न
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
उत्तर
Consider a2 + b2 = sin2α + sin2β + 2 sin α sin β + cos2α + cos2β + 2 cos α cos β
a2 + b2 = (sin2α + cos2α) + (sin2β + cos2β) + 2[cos α cos β + sin α sin β]
a2 + b2 = 1 + 1 + 2 cos(α – β)
∴ cos(α – β) = `(a^2 + b^2 - 2)/2`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin (-105°)
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of sin (-420°)
The value of sin 28° cos 17° + cos 28° sin 17°
The value of cos2 45° – sin2 45° is:
If p sec 50° = tan 50° then p is: