Advertisements
Advertisements
प्रश्न
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
उत्तर
`1/x + 1/y = 1/(tan "A" - tan "B") + 1/(cot "B" - cot "A")`
= `1/(tan "A" - tan "B") + 1/(1/tan "B" - 1/(tan "A"))`
= `1/(tan "A" - tan "B") + 1/(((tan "A" - tan "B")/(tan "A" tan "B")))`
= `1/(tan "A" - tan "B") + (tan "A" tan "B")/(tan "A" - tan "B") = (1 + tan "A" tan "B")/(tan "A" - tan "B")`
`= 1/(tan ("A - B")) ....(because tan ("A - B") = (tan "A" - tan "B")/(1 - tan "A" tan "B"))`
= cot (A - B) = LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cot 75°
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
The value of sin 15° is:
The value of sin 28° cos 17° + cos 28° sin 17°
The value of sec A sin(270° + A) is:
The value of cos2 45° – sin2 45° is: