Advertisements
Advertisements
प्रश्न
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
उत्तर
Given that sin A = `3/5`, 0 < A < `pi/2` (i.e., A lies in first quadrant)
Since A lies in first quadrant cos A is positive.
cos A = `"Adjacent side"/"Hypotenuse" = 4/5`
Tan A = `3/4`
AB = `sqrt(5^2 - 3^2)` = 4
Also given that cos B = `(-12)/13`, π < B < `(3pi)/2` (i.e., B lies in third quadrant)
Now sin B lies in third quadrant. sin B is negative.
CA = `sqrt(13^2 - 12^2)` = 5
sin B = `(- "Opposite side")/("Hypotenuse") = (-5)/13`
tan B = `(- "Opposite side")/("Adjacent") = (5)/12` .... [B lies in 3rd quadrant. tan B is positive.]
(i) cos(A + B) = cos A cos B – sin A sin B
`= 4/5((-12)/13) - 3/5 xx ((-5)/13)`
`= (-48)/65 + 15/65 = (-33)/65`
(ii) sin(A – B) = sin A cos B – cos A sin B
`= 3/5((-12)/13) - 4/5 xx ((-5)/13)`
`= (-36)/65 + 20/65 = (-16)/65`
(iii) tan(A – B)
tan(A – B) = `(tan "A" - tan "B")/(1 + tan "A" tan "B")`
`= (3/4 - (5/12))/(1 + 3/4 xx (5/12))`
`= (3/4 - 5/12)/(1 + 3/4 xx 5/12)`
`= ((9-5)/12)/(1 + 5/(4 xx 4))`
`= (4/12)/(21/16)`
`= 4/12 xx 16/21`
`= (4 xx 4)/(3 xx 21)`
`= 16/63`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin (-105°)
Find the value of the following:
cot 75°
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of sin 15° is:
The value of sec A sin(270° + A) is: