Advertisements
Advertisements
Question
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
Solution
Given that sin A = `3/5`, 0 < A < `pi/2` (i.e., A lies in first quadrant)
Since A lies in first quadrant cos A is positive.
cos A = `"Adjacent side"/"Hypotenuse" = 4/5`
Tan A = `3/4`
AB = `sqrt(5^2 - 3^2)` = 4
Also given that cos B = `(-12)/13`, π < B < `(3pi)/2` (i.e., B lies in third quadrant)
Now sin B lies in third quadrant. sin B is negative.
CA = `sqrt(13^2 - 12^2)` = 5
sin B = `(- "Opposite side")/("Hypotenuse") = (-5)/13`
tan B = `(- "Opposite side")/("Adjacent") = (5)/12` .... [B lies in 3rd quadrant. tan B is positive.]
(i) cos(A + B) = cos A cos B – sin A sin B
`= 4/5((-12)/13) - 3/5 xx ((-5)/13)`
`= (-48)/65 + 15/65 = (-33)/65`
(ii) sin(A – B) = sin A cos B – cos A sin B
`= 3/5((-12)/13) - 4/5 xx ((-5)/13)`
`= (-36)/65 + 20/65 = (-16)/65`
(iii) tan(A – B)
tan(A – B) = `(tan "A" - tan "B")/(1 + tan "A" tan "B")`
`= (3/4 - (5/12))/(1 + 3/4 xx (5/12))`
`= (3/4 - 5/12)/(1 + 3/4 xx 5/12)`
`= ((9-5)/12)/(1 + 5/(4 xx 4))`
`= (4/12)/(21/16)`
`= 4/12 xx 16/21`
`= (4 xx 4)/(3 xx 21)`
`= 16/63`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
Find the value of tan 15°.
The value of sec A sin(270° + A) is:
If sin A + cos A = 1 then sin 2A is equal to:
The value of 1 – 2 sin2 45° is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is:
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to:
If p sec 50° = tan 50° then p is: