Advertisements
Advertisements
Question
Find the value of tan 15°.
Solution
tan 15° = tan (45° - 30°)
`= (tan 45^circ - tan 30^circ)/(1 + tan 45^circ tan 30^circ)`
`[because tan ("A - B") = (tan "A" - tan "B")/(1 + tan "A" tan "B")]`
`= (1 - 1/sqrt3)/(1 + 1 (1)/sqrt3)`
`= ((sqrt3- 1)/sqrt3)/((sqrt3 + 1)/sqrt3)`
`= (sqrt3 - 1)/cancel(sqrt3) xx cancel(sqrt3)/(sqrt3 + 1)`
`= (sqrt3 - 1)/(sqrt3 + 1) xx (sqrt3 - 1)/(sqrt3 - 1)`
`= (3 + 1 - 2sqrt3)/(3 - 1)`
`= (4 - 2sqrt3)/2`
`= 2 - sqrt3`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin (-105°)
Find the value of the following:
cos 70° cos 10° – sin 70° sin 10°
Prove that 2 tan 80° = tan 85° – tan 5°.
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
If sin A = `3/5`, find the values of cos 3A and tan 3A.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
Find the value of tan `pi/8`.
If cos (α + β) = `4/5` and sin (α - β) = `5/13` where (α + β) and (α - β) are acute, then find tan 2α.
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to: