Advertisements
Advertisements
Question
Prove that 2 tan 80° = tan 85° – tan 5°.
Solution
Consider tan 80° = tan(85° – 5°)
`= (tan 85° - tan 5°)/(1 + tan 85° tan 5°)`
`= (tan 85° - tan 5°)/(1 + tan 85° tan (90° - 85°))`
`= (tan 85^circ - tan 5^circ)/(1 + tan 85^circ xx cot 85^circ)`
`= (tan 85^circ - tan 5^circ)/(1 + 1)`
`= (tan 85^circ - tan 5^circ)/2`
∴ 2 tan 80° = tan 85° – tan 5°
Hence Proved.
APPEARS IN
RELATED QUESTIONS
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
Find the value of tan 15°.
If cos (α + β) = `4/5` and sin (α - β) = `5/13` where (α + β) and (α - β) are acute, then find tan 2α.
The value of cos(-480°) is:
The value of sin 15° cos 15° is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is:
If p sec 50° = tan 50° then p is: