Advertisements
Advertisements
प्रश्न
Prove that 2 tan 80° = tan 85° – tan 5°.
उत्तर
Consider tan 80° = tan(85° – 5°)
`= (tan 85° - tan 5°)/(1 + tan 85° tan 5°)`
`= (tan 85° - tan 5°)/(1 + tan 85° tan (90° - 85°))`
`= (tan 85^circ - tan 5^circ)/(1 + tan 85^circ xx cot 85^circ)`
`= (tan 85^circ - tan 5^circ)/(1 + 1)`
`= (tan 85^circ - tan 5^circ)/2`
∴ 2 tan 80° = tan 85° – tan 5°
Hence Proved.
APPEARS IN
संबंधित प्रश्न
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Find the value of tan 15°.
If cos (α + β) = `4/5` and sin (α - β) = `5/13` where (α + β) and (α - β) are acute, then find tan 2α.
The value of sin (-420°)
The value of cos2 45° – sin2 45° is:
The value of 1 – 2 sin2 45° is: