Advertisements
Advertisements
प्रश्न
Find the value of tan 15°.
उत्तर
tan 15° = tan (45° - 30°)
`= (tan 45^circ - tan 30^circ)/(1 + tan 45^circ tan 30^circ)`
`[because tan ("A - B") = (tan "A" - tan "B")/(1 + tan "A" tan "B")]`
`= (1 - 1/sqrt3)/(1 + 1 (1)/sqrt3)`
`= ((sqrt3- 1)/sqrt3)/((sqrt3 + 1)/sqrt3)`
`= (sqrt3 - 1)/cancel(sqrt3) xx cancel(sqrt3)/(sqrt3 + 1)`
`= (sqrt3 - 1)/(sqrt3 + 1) xx (sqrt3 - 1)/(sqrt3 - 1)`
`= (3 + 1 - 2sqrt3)/(3 - 1)`
`= (4 - 2sqrt3)/2`
`= 2 - sqrt3`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
Find the value of sin 75°.
The value of sin 15° is:
The value of sin 28° cos 17° + cos 28° sin 17°
The value of sin 15° cos 15° is:
The value of sec A sin(270° + A) is:
If sin A + cos A = 1 then sin 2A is equal to:
The value of 4 cos3 40° – 3 cos 40° is
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to: