Advertisements
Advertisements
प्रश्न
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to:
विकल्प
1
2
3
4
उत्तर
3
APPEARS IN
संबंधित प्रश्न
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Find the value of tan 15°.
The value of cos(-480°) is:
The value of cos2 45° – sin2 45° is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is: