Advertisements
Advertisements
प्रश्न
The value of cos(-480°) is:
विकल्प
`sqrt3`
`- sqrt3/2`
`1/2`
`(-1)/2`
उत्तर
`(-1)/2`
Explanation:
cos(-480°) = cos 480° [∵ cos(-θ) = cos θ]
= cos(360° + 120°)
= cos 120°
= cos(180° – 60°)
= -cos 60°
= `(-1)/2`
APPEARS IN
संबंधित प्रश्न
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
If tan θ = 3 find tan 3θ
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
Find the value of tan 15°.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of sin 15° is:
The value of sin 28° cos 17° + cos 28° sin 17°
The value of sin 15° cos 15° is:
The value of sec A sin(270° + A) is:
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to: