Advertisements
Advertisements
प्रश्न
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
उत्तर
Consider `(sin ("B - C"))/(cos "B" cos "C")`
`= (sin "B" cos "C" - cos "B" sin "C")/(cos "B" cos "C")`
`= (sin "B" cos "C")/(cos "B" cos "C") - (cos "B" sin "C")/(cos "B" cos "C")`
= tan B – tan C ……… (1)
Similarly we can prove `(sin ("C - A"))/(cos "C" cos "A")` = tan C – tan A …….(2)
and `(sin ("A - B"))/(cos "A" cos "B")` = tan A – tan B …….. (3)
Add (1), (2) and (3) we get
`(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cosec 15º
Find the value of the following:
cos 70° cos 10° – sin 70° sin 10°
Prove that 2 tan 80° = tan 85° – tan 5°.
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
Find the value of sin 75°.
The value of sin 15° is:
The value of sin (-420°)
The value of sec A sin(270° + A) is: