Advertisements
Advertisements
प्रश्न
Find the value of sin 75°.
उत्तर
sin 75°
= sin (45° + 30°) = sin 45° cos 30° + cos 45° sin 30°
[∵ sin (A + B) = sin A cos B + cos A sin B]
`= 1/sqrt2 xx sqrt3/2 + 1/sqrt2 xx 1/2`
`= (sqrt3 + 1)/(2sqrt2) xx sqrt2/sqrt2`
`= (sqrt6 + sqrt2)/4`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
`sin pi/4 cos pi/12 + cos pi/4 sin pi/12`
Find the value of the following:
cos2 15° – sin2 15°
Prove that 2 tan 80° = tan 85° – tan 5°.
If tan θ = 3 find tan 3θ
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
The value of sin (-420°)
The value of sin 15° cos 15° is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is: