Advertisements
Advertisements
प्रश्न
Find the value of sin 75°.
उत्तर
sin 75°
= sin (45° + 30°) = sin 45° cos 30° + cos 45° sin 30°
[∵ sin (A + B) = sin A cos B + cos A sin B]
`= 1/sqrt2 xx sqrt3/2 + 1/sqrt2 xx 1/2`
`= (sqrt3 + 1)/(2sqrt2) xx sqrt2/sqrt2`
`= (sqrt6 + sqrt2)/4`
APPEARS IN
संबंधित प्रश्न
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
If sin A = `12/13`, find sin 3A.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
Find the value of tan `pi/8`.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of cos2 45° – sin2 45° is: