Advertisements
Advertisements
प्रश्न
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
उत्तर
`sin (3pi)/4 = sin 3 xx 45^circ = sin 135^circ`
= sin (180 - 45)
= sin 45° = `1/sqrt2`
`sec ((pi/3)) = 2`
`therefore 2 sin^2 ((3pi)/4) + 2 cos^2 pi/4 + 2 sec^2 pi/3`
`= 2 (sin (3pi)/4)^2 + 2 (cos pi/4)^2 + 2 (sec pi/3)^2`
`= 2 (1/sqrt2)^2 + 2 (1/sqrt2)^2 + 2 (2)^2`
`= cancel(2)(1/cancel(2)) + cancel(2)(1/cancel(2)) + 2 (2)^2`
= 1 + 1 + 8 = 10
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cosec 15º
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If sin A = `12/13`, find sin 3A.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
Find the value of tan 15°.
The value of cos(-480°) is:
The value of sec A sin(270° + A) is:
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to: