Advertisements
Advertisements
Question
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
Solution
`sin (3pi)/4 = sin 3 xx 45^circ = sin 135^circ`
= sin (180 - 45)
= sin 45° = `1/sqrt2`
`sec ((pi/3)) = 2`
`therefore 2 sin^2 ((3pi)/4) + 2 cos^2 pi/4 + 2 sec^2 pi/3`
`= 2 (sin (3pi)/4)^2 + 2 (cos pi/4)^2 + 2 (sec pi/3)^2`
`= 2 (1/sqrt2)^2 + 2 (1/sqrt2)^2 + 2 (2)^2`
`= cancel(2)(1/cancel(2)) + cancel(2)(1/cancel(2)) + 2 (2)^2`
= 1 + 1 + 8 = 10
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Find the value of the following:
cos 70° cos 10° – sin 70° sin 10°
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
Find the value of tan `pi/8`.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
If cos (α + β) = `4/5` and sin (α - β) = `5/13` where (α + β) and (α - β) are acute, then find tan 2α.
The value of sin 28° cos 17° + cos 28° sin 17°
The value of sin 15° cos 15° is:
The value of cos2 45° – sin2 45° is: