Advertisements
Advertisements
Question
Find the value of tan `pi/8`.
Solution 1
`pi/8 = 180^circ/8 = 45^circ/2 = 22 1/2`
We know that tan 2A = `(2 tan "A")/(1 - tan^2 "A")`
Put A = `22 1/2` in the above formula
We get tan 2 `(22 1^circ/2) = (2 tan 22 1^circ/2)/(1 - tan^2 22 1^circ/2)`
`tan 45^circ = (2 tan 22 1^circ/2)/(1 - tan^2 22 1^circ/2)`
`1 = (2 tan 22 1^circ/2)/(1 - tan^2 22 1^circ/2)`
On cross multiplication we get
`1 - tan^2 22 1^circ/2 = 2 tan 22 1^circ/2`
(or) `tan^2 22 1^circ/2 + 2 tan 22 1^circ/2 - 1 = 0`
x = `(-b +- sqrt(b^2 - 4ac))/(2a)`
`tan 22 1^circ/2 = (- 2 +- sqrt(4 - 4 xx 1 xx (-1)))/(2 xx 1)`
Here a = 1, b = 2, c = -1
`= (- 2 +- sqrt(4 + 4))/2`
`= (- 2 +- 2sqrt 2)/2`
`= 2 [(- 1 +- sqrt2)/2] = - 1 +- sqrt2`
Since `22 1/2` is acute tan `22 1/2` is positive tan `22 1/2 = tan pi/8`
= -1 + `sqrt2`
= `sqrt2` – 1
Solution 2
`pi/8 = 180^circ/8 = 45^circ/2 = 22 1/2`
Consider `tan^2 "A"/2 = (sin^2 "A"/2)/(cos^2 "A"/2) = ((1 - cos"A")/2)/((1 + cos "A")/2)`
`(because sin^2 "A" = (1 - cos 2"A")/2; cos^2"A" = (1 + cos 2"A")/2)`
`tan^2 "A"/2 = (1 - cos 2"A")/(1 + cos 2"A")`
Put A = 45°, we get
`tan^2 45^circ/2 = (1 - cos 45^circ)/(1 + cos 45^circ)`
`= (1 - 1/sqrt2)/(1 + 1/sqrt2) = (((sqrt2 - 1)/sqrt2))/(((sqrt2 + 1)/sqrt2))`
`= (sqrt2 - 1)/(sqrt2 + 1) xx (sqrt2 - 1)/(sqrt2 - 1)`
`= (sqrt2 - 1)^2/((sqrt2)^2 - 1^2)`
`tan^2 45^circ/2 = (sqrt2 - 1)^2/1`
`therefore tan^2 22 1/2 = (sqrt2 - 1)^2`
Taking square root, `tan^2 22 1/2 = +- (sqrt2 - 1)`
But `22 1/2` lies in first quadrant, tan `22 1/2` is positive.
`tan 22 1/2 = sqrt2 - 1`
Solution 3
consider tan A = `(sin 2"A")/(1 + cos 2"A")`
Put A = `22 1/2`
`[because (sin 2"A")/(1 + cos 2"A") = (2 sin "A" cos "A")/(3 cos^2 "A") = (sin "A")/(cos "A") = tan A]`
`tan 22 1^circ/2 = (sin (2 xx 22 1^circ/2))/(1 + cos (2 xx 22 1^circ/2))`
`= (sin 45^circ)/(1 + cos 45^circ) = (1/sqrt2)/(1 + 1/sqrt2) = (1/sqrt2)/((sqrt2 + 1)/sqrt2)`
`= (1/sqrt2) xx ((sqrt2)/(sqrt2 + 1))`
`= 1/(sqrt2 + 1) xx (sqrt2 - 1)/(sqrt2 - 1)`
`= (sqrt2 - 1)/((sqrt2)^2 - (1)^2) = (sqrt2 - 1)/(2 - 1)`
tan `22 1/2 = sqrt2 - 1`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin (-105°)
Find the value of the following:
cot 75°
Find the value of the following:
cos 70° cos 10° – sin 70° sin 10°
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
The value of sin (-420°)
The value of cos(-480°) is:
The value of sin 28° cos 17° + cos 28° sin 17°
The value of sin 15° cos 15° is:
The value of sec A sin(270° + A) is:
The value of cos2 45° – sin2 45° is: