Advertisements
Advertisements
Question
Find the value of the following:
cot 75°
Solution
cot 75° = `1/(tan 75^circ)`
Consider tan 75° = tan (30° + 45°)
`= (tan 30^circ + tan 45^circ)/(1 - tan 30^circ tan 45^circ)`
`= (1/sqrt3 + 1)/(1 - (1/sqrt3) xx 1)`
`= ((1 + sqrt3)/sqrt3)/(1 - 1/sqrt3)`
`= (((1 + sqrt3)/sqrt3))/(((sqrt3 - 1)/sqrt3))`
`= (1 + sqrt3)/sqrt3 xx sqrt3/(sqrt3 - 1)`
`= (sqrt3 + 1)/(sqrt3 - 1)`
cot 75° = `1/(tan 75^circ) = (sqrt3 + 1)/(sqrt3 - 1)`
APPEARS IN
RELATED QUESTIONS
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Find the value of tan `pi/8`.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
Find the value of sin 75°.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of sin 28° cos 17° + cos 28° sin 17°
The value of sin 15° cos 15° is:
The value of cos2 45° – sin2 45° is: