Advertisements
Advertisements
Question
Find the value of the following:
sin (-105°)
Solution
sin (-105°) = -sin (105°) (∵ sin (-θ) = – sin θ)
= -[sin(60° + 45°)]
= -[sin 60° cos 45° + cos 60° sin 45°]
`= -[sqrt3/2 xx 1/sqrt2 + 1/2 xx 1/sqrt2]`
`= - [sqrt3/(2sqrt2) + 1/(2sqrt2)]`
`= - [(sqrt3 + 1)/(2sqrt2)]`
APPEARS IN
RELATED QUESTIONS
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
If tan θ = 3 find tan 3θ
If sin A = `12/13`, find sin 3A.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
Find the value of tan 15°.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
If sin A + cos A = 1 then sin 2A is equal to:
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to:
If p sec 50° = tan 50° then p is: