Advertisements
Advertisements
Question
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
Solution
`1/x + 1/y = 1/(tan "A" - tan "B") + 1/(cot "B" - cot "A")`
= `1/(tan "A" - tan "B") + 1/(1/tan "B" - 1/(tan "A"))`
= `1/(tan "A" - tan "B") + 1/(((tan "A" - tan "B")/(tan "A" tan "B")))`
= `1/(tan "A" - tan "B") + (tan "A" tan "B")/(tan "A" - tan "B") = (1 + tan "A" tan "B")/(tan "A" - tan "B")`
`= 1/(tan ("A - B")) ....(because tan ("A - B") = (tan "A" - tan "B")/(1 - tan "A" tan "B"))`
= cot (A - B) = LHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin (-105°)
Find the value of the following:
cot 75°
Find the value of the following:
cos2 15° – sin2 15°
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
If sin A = `12/13`, find sin 3A.
The value of sin 15° is:
The value of cos(-480°) is:
The value of sin 28° cos 17° + cos 28° sin 17°
The value of 1 – 2 sin2 45° is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is: