Advertisements
Advertisements
Question
The value of sin 15° is:
Options
`(sqrt3 + 1)/(2sqrt2)`
`(sqrt3 - 1)/(2sqrt2)`
`sqrt3/sqrt2`
`(sqrt3)/(2sqrt2)`
Solution
`(sqrt3 - 1)/(2sqrt2)`
Explanation:
sin 15° = sin(45° – 30°)
= sin 45° cos 30° – cos 45° sin 30°
`= 1/sqrt2 xx sqrt3/2 - 1/sqrt2 xx 1/2`
`=(sqrt3 - 1)/(2sqrt2)`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
`sin pi/4 cos pi/12 + cos pi/4 sin pi/12`
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
Prove that 2 tan 80° = tan 85° – tan 5°.
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
Find the value of sin 75°.
If sin A + cos A = 1 then sin 2A is equal to:
The value of 4 cos3 40° – 3 cos 40° is