Advertisements
Advertisements
Question
Find the value of sin 75°.
Solution
sin 75°
= sin (45° + 30°) = sin 45° cos 30° + cos 45° sin 30°
[∵ sin (A + B) = sin A cos B + cos A sin B]
`= 1/sqrt2 xx sqrt3/2 + 1/sqrt2 xx 1/2`
`= (sqrt3 + 1)/(2sqrt2) xx sqrt2/sqrt2`
`= (sqrt6 + sqrt2)/4`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
sin (-105°)
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Find the value of the following:
cos2 15° – sin2 15°
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
If sin A = `3/5`, find the values of cos 3A and tan 3A.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of sin (-420°)
If sin A + cos A = 1 then sin 2A is equal to:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is: