Advertisements
Advertisements
प्रश्न
The value of sin 15° is:
विकल्प
`(sqrt3 + 1)/(2sqrt2)`
`(sqrt3 - 1)/(2sqrt2)`
`sqrt3/sqrt2`
`(sqrt3)/(2sqrt2)`
उत्तर
`(sqrt3 - 1)/(2sqrt2)`
Explanation:
sin 15° = sin(45° – 30°)
= sin 45° cos 30° – cos 45° sin 30°
`= 1/sqrt2 xx sqrt3/2 - 1/sqrt2 xx 1/2`
`=(sqrt3 - 1)/(2sqrt2)`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of sin 28° cos 17° + cos 28° sin 17°
The value of 1 – 2 sin2 45° is: