Advertisements
Advertisements
प्रश्न
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
उत्तर
LHS = `cos^-1 (12/13) + sin^-1 (3/5)`
`= sin^-1 sqrt(1 - (12/13)^2) + sin^-1 (3/5)`
`[∵ cos^-1 x = sin^-1 sqrt(1 - x^2)]`
`= sin^-1 sqrt((169 - 144)/169) + sin^-1 (3/5)`
`= sin^-1 (5/13) + sin^-1 (3/5)`
`= sin^-1 [5/13 sqrt(1 - (3/5)^2) + 3/5 sqrt(1 - (5/13)^2)]`
`[∵ sin^-1 x + sin^-1 y = sin^-1 (xsqrt(1 - y^2) + ysqrt(1 - x^2))]`
`= sin^-1 [5/13 xx sqrt((25 - 9)/25) + 3/5 sqrt((169- 25)/169)]`
`= sin^-1 [5/13 xx 4/5 + 3/5 xx 12/13]`
`= sin^-1 [4/13 + 36/65]`
`= sin^-1 [(20 + 36)/65]`
`= sin^-1 (56/65)` = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cosec 15º
Find the value of the following:
cot 75°
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of cos(-480°) is:
The value of sin 15° cos 15° is:
If p sec 50° = tan 50° then p is: