Advertisements
Advertisements
प्रश्न
Find the value of the following:
cosec 15º
उत्तर
cosec 15º = `1/(sin 15^circ)`
Consider sin 15° = sin(45° – 30°)
= sin 45° cos 30° – cos 45° sin 30°
`= 1/sqrt2 xx sqrt3/2 - 1/sqrt2 xx 1/2`
`= sqrt3/(2sqrt2) - 1/(2sqrt2)`
`= (sqrt3 - 1)/(2sqrt2)`
cosec 15° = `1/(sin 15^circ) = (2sqrt2)/(sqrt3 - 1)`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
cot 75°
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Prove that 2 tan 80° = tan 85° – tan 5°.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of sin (-420°)
The value of sin 15° cos 15° is:
If sin A + cos A = 1 then sin 2A is equal to:
The value of cos2 45° – sin2 45° is:
The value of 4 cos3 40° – 3 cos 40° is