Advertisements
Advertisements
प्रश्न
Find the value of the following:
cosec 15º
उत्तर
cosec 15º = `1/(sin 15^circ)`
Consider sin 15° = sin(45° – 30°)
= sin 45° cos 30° – cos 45° sin 30°
`= 1/sqrt2 xx sqrt3/2 - 1/sqrt2 xx 1/2`
`= sqrt3/(2sqrt2) - 1/(2sqrt2)`
`= (sqrt3 - 1)/(2sqrt2)`
cosec 15° = `1/(sin 15^circ) = (2sqrt2)/(sqrt3 - 1)`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin (-105°)
If tan θ = 3 find tan 3θ
If sin A = `12/13`, find sin 3A.
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
Find the value of sin 75°.
Find the value of tan 15°.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of sin (-420°)