Advertisements
Advertisements
प्रश्न
If tan θ = 3 find tan 3θ
उत्तर
tan θ = 3
tan 3θ = `(3 tan θ - tan^3 θ)/(1 - 3 tan^2 θ)`
`= (3(3) - (3)^3)/(1 - 3(3)^2)`
`= (9 - 27)/(1 - 27)`
`= (- 18)/(- 26) = 9/13`
APPEARS IN
संबंधित प्रश्न
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of sin 15° is:
The value of cos(-480°) is:
The value of sin 28° cos 17° + cos 28° sin 17°
The value of sin 15° cos 15° is:
The value of sec A sin(270° + A) is:
The value of 4 cos3 40° – 3 cos 40° is