Advertisements
Advertisements
प्रश्न
The value of sin 15° is:
पर्याय
`(sqrt3 + 1)/(2sqrt2)`
`(sqrt3 - 1)/(2sqrt2)`
`sqrt3/sqrt2`
`(sqrt3)/(2sqrt2)`
उत्तर
`(sqrt3 - 1)/(2sqrt2)`
Explanation:
sin 15° = sin(45° – 30°)
= sin 45° cos 30° – cos 45° sin 30°
`= 1/sqrt2 xx sqrt3/2 - 1/sqrt2 xx 1/2`
`=(sqrt3 - 1)/(2sqrt2)`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
If tan θ = 3 find tan 3θ
Find the value of tan `pi/8`.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
The value of sin (-420°)
The value of cos(-480°) is:
The value of 4 cos3 40° – 3 cos 40° is