Advertisements
Advertisements
प्रश्न
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
उत्तर
Given A + B = 45°
tan (A + B) = tan 45°
`(tan "A" + tan "B")/(1 - tan "A" tan "B")` = 1
tan A + tan B = 1 – tan A . tan B
tan A + tan B + tan A tan B = 1
Add 1 on both sides we get,
(1 + tan A) + tan B + tan A tan B = 2
1(1+ tan A) + tan B (1 + tan A) = 2
(1 + tan A) (1 + tan B) = 2 ……. (1)
Put A = B = 22`1/2` in (1) we get
`(1 + tan 22 1/2) (1 + tan 22 1/2)` = 2
⇒ `(1 + tan 22 1/2)^2` = 2
⇒ 1 + tan 22`1/2 = +- sqrt2`
⇒ tan 22`1/2 = +- sqrt2 - 1`
Since 22`1/2` is acute, tan `22 1/2` is positive and therefore tan `22 1/2 = sqrt2 - 1`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin (-105°)
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
If sin A = `12/13`, find sin 3A.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of sin (-420°)
The value of sin 28° cos 17° + cos 28° sin 17°
The value of sin 15° cos 15° is:
If p sec 50° = tan 50° then p is: